Chi2 Tests for the Choice of the Regularization Parameter in Nonlinear Inverse Problems
نویسندگان
چکیده
We address discrete nonlinear inverse problems with weighted least squares and Tikhonov regularization. Regularization is a way to add more information to the problem when it is ill-posed or ill-conditioned. However, it is still an open question as to how to weight this information. The discrepancy principle considers the residual norm to determine the regularization weight or parameter, while the χ2 method [J. Mead, J. Inverse Ill-Posed Probl., 16 (2008), pp. 175– 194; J. Mead and R. A. Renaut, Inverse Problems, 25 (2009), 025002; J. Mead, Appl. Math. Comput., 219 (2013), pp. 5210–5223; R. A. Renaut, I. Hnetynkova, and J. L. Mead, Comput. Statist. Data Anal., 54 (2010), pp. 3430–3445] uses the regularized residual. Using the regularized residual has the benefit of giving a clear χ2 test with a fixed noise level when the number of parameters is equal to or greater than the number of data. Previous work with the χ2 method has been for linear problems, and here we extend it to nonlinear problems. In particular, we determine the appropriate χ2 tests for Gauss–Newton and Levenberg–Marquardt algorithms, and these tests are used to find a regularization parameter or weights on initial parameter estimate errors. This algorithm is applied to a two-dimensional cross-well tomography problem and a one-dimensional electromagnetic problem from [R. C. Aster, B. Borchers, and C. Thurber, Parameter Estimation and Inverse Problems, Academic Press, New York, 2005].
منابع مشابه
A regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method
The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...
متن کاملΧ Tests for the Choice of the Regularization Parameter in Nonlinear Inverse Problems∗
We address discrete nonlinear inverse problems with weighted least squares and Tikhonov regularization. Regularization is a way to add more information to the problem when it is ill-posed or ill-conditioned. However, it is still an open question as to how to weight this information. The discrepancy principle considers the residual norm to determine the regularization weight or parameter, while ...
متن کاملSolving a nonlinear inverse system of Burgers equations
By applying finite difference formula to time discretization and the cubic B-splines for spatial variable, a numerical method for solving the inverse system of Burgers equations is presented. Also, the convergence analysis and stability for this problem are investigated and the order of convergence is obtained. By using two test problems, the accuracy of presented method is verified. Additional...
متن کاملA numerical approach for solving a nonlinear inverse diusion problem by Tikhonov regularization
In this paper, we propose an algorithm for numerical solving an inverse non-linear diusion problem. In additional, the least-squares method is adopted tond the solution. To regularize the resultant ill-conditioned linear system ofequations, we apply the Tikhonov regularization method to obtain the stablenumerical approximation to the solution. Some numerical experiments con-rm the utility of th...
متن کاملIll-Posed and Linear Inverse Problems
In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 34 شماره
صفحات -
تاریخ انتشار 2013